$p$-$\mathcal{I}$-generator and $p_1$-$\mathcal{i}$-generator in bitopology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix-Variate Beta Generator - Developments and Application

Matrix-variate beta distributions are applied in different fields of hypothesis testing, multivariate correlation analysis, zero regression, canonical correlation analysis and etc. A methodology is proposed to generate matrix-variate beta generator distributions by combining the matrix-variate beta kernel with an unknown function of the trace operator. Several statistical characteristics, exten...

متن کامل

nth-roots and n-centrality of finite 2-generator p-groups of nilpotency class 2

Here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. Also we find integers $n$ for which, these groups are $n$-central.

متن کامل

Generator polynomials and generator matrix for quasi cyclic codes

Quasi-cyclic (QC) codes form an important generalization of cyclic codes. It is well know that QC codes of length sl with index s over the finite field F are F[y]-submodules of the ring F[x, y]/< x − 1, y − 1 >. The aim of the present paper, is to study QC codes of length sl with index s over the finite field F and find generator polynomials and generator matrix for these codes. To achieve this...

متن کامل

Mesh Generator

Introduction Medical data is often stored in the form of two dimensional images, detailed slices of sections of the body. Images representing the interior can be obtained using a number of technologies such as magnetic resonance imaging (MRI), computer aided topography (CAT) and ultrasound. Many forms of 3D images are sampled from two dimensional slices. Medical data stored as sets of slices ca...

متن کامل

Generator Reversal

We consider the problem of training generative models with deep neural networks as generators, i.e. to map latent codes to data points. Whereas the dominant paradigm combines simple priors over codes with complex deterministic models, we propose instead to use more flexible code distributions. These distributions are estimated non-parametrically by reversing the generator map during training. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática

سال: 2018

ISSN: 2175-1188,0037-8712

DOI: 10.5269/bspm.v36i2.29377